radioatividade artificial e da fissão nuclear no sistema categorial Graceli.
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl

X
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl

X
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl

X
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl

X
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl

X
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
(1897-1956; PNQ, 1935), o físico francês Jean Frédéric Joliot (1900-1958) resolveu adotar o nome Joliot-Curie para que ficasse preservado o nome Curie, uma vez que sua mulher só possuía a irmã Eve, conforme registramos anteriormente. A fama do casal Joliot-Curie se deveu ao fato da descoberta da radioatividade artificial ocorrida em 1934 (Comptes Rendus de l´Academie de Sciences de Paris 198, pgs. 254; 559 e Nature 133, p. 201), em conseqüência de experiências que o casal realizou, nas quais bombardeou alumínio (
) com partículas
(
). Depois de remover a fonte dessas partículas, os Joliot-Curie observaram que o alvo de alumínio, depois de expelir nêutrons (
), continuava a emitir radiações e interpretou-as como provindas de um isótopo, na realidade, um radioisótopo do fósforo (
) não encontrado na Natureza. Desse modo, esse casal acabara de descobrir a radioatividade artificial, de acordo com a seguinte reação nuclear:






Muito mais tarde, na década de 1950, as radiações que aparecem nesse tipo de reação nuclear, foram explicadas como sendo devidas ao decaimento desse fósforo radioativo em silício (
), com a emissão de um pósitron (
) e seu respectivo neutrino (
), em uma reação do tipo:
com a vida média tendo o seguinte valor: T = 3,25 min.




É oportuno destacar que, antes dessa sensacional descoberta, o casal Joliot-Curie esteve perto de realizar duas outras notáveis descobertas. Vejamos como. Em 1932 (Comptes Rendus de l´Academie de Sciences de Paris 194, pgs. 273; 708; 876), esse casal bombardeou um alvo de berílio (Be) com partículas
, observando uma “radiação penetrante” capaz de arrancar prótons (p) do absorvente de parafina que esse casal havia usado. Aliás, esse tipo de “radiação penetrante” já havia sido observado pelos físicos alemães Walther Bothe (1891-1957; PNF, 1954) e Herbert Becker (1887-1955), em 1930 (Zeitschrift für Physik 66, p. 289; Naturwissenschaften 18, p. 705), ao bombardearem os elementos químicos leves [lítio (Li), Be, boro (B) etc.] com partículas
emitidas pelo polônio (Po), descoberto pelo casal Curie, em 1898. Esse tipo de “radiação” foi então interpretada como radiação gama (
). Contudo, o casal Joliot-Curie interpretou-a como sendo um novo tipo de radiação, diferente da
. Ao apresentarem essa interpretação, admitiram que essa “nova radiação penetrante” havia sofrido um espalhamento Compton com o próton da parafina e, com isso, o casal calculou sua energia como sendo de 55 Mev. Porém, nessa época, não havia evidência experimental para uma energia tão alta, uma vez que o máximo de energia então observada experimentalmente era da ordem de 10,6 Mev.




É oportuno registrar que essa possível “nova radiação” da Natureza foi interpretada corretamente pelo físico inglês Sir James Chadwick (1891-1974; PNF, 1935), ainda em 1932 (Proceedings of the Royal Society of London A136, pgs. 696; 735 e Nature 129, p. 312), ao realizar uma experiência na qual estudou a colisão de partículas
com um alvo de boro (
), colisão essa que produziu o nitrogênio (
) e mais uma “radiação penetrante”, conforme acontecera nos casos vistos acima. No entanto, Chadwick interpretou essa “radiação” como sendo uma partícula neutra (conforme já havia sugerido, em 1931, em um trabalho que escreveu com H. C. Webster), a qual chamou de nêutron (
), conforme indica a seguinte reação nuclear:
, partícula essa cuja massa era aproximadamente igual à do próton. Observe-se que, nessa experiência, Chadwick usou um novo tipo de detector, o chamado escala de dois-contadores (“scale of two-counter”), que havia sido inventado pelos físicos ingleses F. A. B. Ward, Charles Eryl Wynn-Williams e H. M. Cave, em 1929 (Proceedings of the Royal Society of London A125, p. 715). Segundo nos relata o físico ítalo-norte-americano Emílio Gino Segré (1905-1989; PNF, PNF, 1959) em seu livro Dos Raios-X aos Quarks (Editora UnB, 1987), quando o físico italiano Ettore Majorana (1906-1938) leu o trabalho dos Joliot-Curie, exclamou: Que tolice. Eles descobriram um próton neutro e não o reconheceram. [O leitor poderá ver uma discussão matemática sobre as interpretações do casal Joliot-Curie e de Chadwick, no seguinte livro: V. Acosta, C. L. Cowan e B. J. Graham, Curso de Física Moderna (Harla, 1975).]





A segunda quase-descoberta do casal Joliot-Curie aconteceu no ano seguinte, em 1933 (Journal de Physique 4, p. 494), quando apresentou o resultado de experiências que realizou sobre a irradiação do alumínio (
) e do boro (
) com partículas
, nas quais esse casal pensou que havia produzido a desintegração do próton (1p1) no nêutron (0n1) e no elétron positivo (
), que acabara de ser descoberto pelo físico norte-americano Carl David Anderson (1905-1991; PNF, 1936), em 1932 (Proceedings of the Royal Society of London A41, p. 405 e Science 76, p. 238). Com essas experiências, os Joliot-Curie haviam observado, sem perceber, o que seria no ano seguinte, em 1934, interpretado como decaimento beta (
) inverso, em trabalhos independentes, do físico italiano Gian Carlo Wick (1909-1992) (Atti Reconditi Lincei. Accademia nationale dei Lincei 19, p. 319) e dos físicos, o germano-norte-americano Hans Bethe (1906-2005; PNF, 1967) e o inglês Rudolf Ernst Peierls (1907-1995) (Nature 133, p. 532). Em linguagem atual, as experiências dos Joliot-Curie são representadas pelas seguintes reações nucleares:







Antes do início da Segunda Guerra Mundial (01/09/1939-08/05/1945), Frédéric Joliot-Curie observou que durante a fissão do urânio (U) [que havia sido produzida pela física sueco-austríaca Lise Meitner (1878-1968) e pelos químicos alemães Otto Hahn (1879-1968; PNQ, 1944) e Fritz Strassmann (1902-1980), em 1938, e da qual já falamos em um verbete desta série] havia produção de nêutrons e iniciou, a partir de então, uma linha de pesquisa que poderia levar a uma reação em cadeia. Segundo o químico francês Bertrand Goldschmidt (1912-2002) - que pertencia ao Laboratório de Frédéric, localizado em Clermont-Ferrand - em maio de 1939, Frédéric já havia conseguido um certo número de patentes, que o levaria a construir uma central nuclear, utilizando para isso a água pesada (D2O) e o urânio. Contudo, com a invasão da França pelo exército alemão nazista, em 10 de maio de 1940, aquele Laboratório foi evacuado e o estoque de água pesada (180 quilos) que a França havia adquirido da Noruega, foi guardado na Prisão de Riom. É oportuno esclarecer que, graças a essa providência, pôde a França construir, em 1948, seu primeiro reator nuclear, sob a direção de Frédéric.
Aliás, sobre Lise Meitner [uma amante da música, que tocava duetos para piano com o sobrinho, o físico austro-alemão Otto Robert Frisch (1904-1979) e também com Max Karl Ernst Ludwig Planck (1858-1947; PNF, 1918), um pianista dotado], há um fato curioso a registrar. Em 1907, ela ofereceu-se voluntariamente para trabalhar no laboratório de Madame Curie, uma vez que tinha uma profunda veneração por essa cientista. Foi rejeitada. Segundo ela própria teria dito posteriormente: Como Irène era a “princesa” do Laboratório, sua mãe não queria outras “mentes brilhantes”. Essa rejeição permitiu que, ainda em 1907 e por indicação de Planck, Otto Hahn a contratasse e realizassem a famosa experiência citada acima que, ela própria com a colaboração de seu sobrinho Frisch interpretaram-na, em 1939 (Nature 143, pgs. 239; 471), como uma fissão nuclear, pois acreditavam que a experiência referida podia ser explicada com a suposição de que o urânio ao receber o nêutron, se partiria em dois fragmentos (xenônio – Xe e estrôncio – Sr), obedecendo a seguinte reação nuclear (em notação atual):

É interessante registrar que o nome fissão nuclear foi sugerido a Frisch pelo bioquímico norte-americano William A. Arnold, uma vez que era um termo utilizado na divisão celular de uma bactéria. Aliás, a idéia de fissão já havia sido pensada pela química alemã Ida Eva Tacke Noddack (1896-1979), em 1934 (Angewandte Chemie 47, p. 653), ao interpretar as experiências realizadas pelo físico ítalo-norte-americano Enrico Fermi (1901-1954; PNF, 1938) e seu grupo na Universidade de Roma (vide verbete nesta série), em maio de 1934, como sendo devidas a uma “fissão”. No entanto, ela nunca se preocupou em realizar uma experiência para confirmar essa sua conjectura. Registre-se, também, que a primeira explicação teórica sobre a “fissão nuclear” foi formulada, em 1939, em trabalhos independentes realizados pelos físicos, o dinamarquês Niels Henrik David Bohr (1885-1962; PNF, 1922) e o norte-americano John Archibald Wheeler (n.1911) (Physical Review 56, pgs. 426; 1056), e o russo Yakov Ilyich Frenkel (1894-1954) (Journal de Physique – URSS 1, p. 125) , usando o modelo da “gota líquida” que havia sido formulada por Bohr, em 1936 (Naturwissenschaften 24, p. 241 e Nature 137, p. 344). Segundo esse modelo, as reações nucleares envolvendo a colisão de partículas leves (p.e.: prótons e nêutrons) com o núcleo que, junto com a partícula incidente, formava um núcleo composto (“gota líquida”) com uma certa “energia de excitação” e que tem uma determinada vida-média antes de cindir-se (“fissionar-se”).